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Abstract

We present two new approximation algorithms for the problem of finding a k-node
connected spanning subgraph (directed or undirected) of minimum cost. The best
known approximation guarantees for this problem were O(min{k, \/ﬁ}) for both di-
rected and undirected graphs, and O(Ink) for undirected graphs with n > 6k?, where
n is the number of nodes in the input graph. Our first algorithm has approxima-
tion ratio O(;%% In? k), which is O(In? k) except for very large values of k, namely,
kE = m — o(n). This algorithm is based on a new result on f-connected p-critical
graphs, which is of independent interest in the context of graph theory. Our second
algorithm uses the primal-dual method and has approximation ratio O(y/nlnk) for
all values of n, k. Combining these two gives an algorithm with approximation ratio
O(Ink-min{vV/k, - Ink}), which asymptotically improves the best known approxima-
tion guarantee for directed graphs for all values of n, k, and for undirected graphs for
k > \/n/6. Moreover, this is the first algorithm that has an approximation guarantee
better than ©(k) for all values of n, k. Our approximation ratio also provides an upper

bound on the integrality gap of the standard LP-relaxation to the problem.

1 Introduction and preliminaries

A basic problem in network design is given a graph to find its minimum cost k-connected
spanning subgraph; a graph is k (-node) connected if it is simple and there are at least k inter-

nally disjoint paths from every node to the other. This problem is NP-hard for undirected



graphs with £ = 2, and for directed graphs with £ = 1. The best known approximation
guarantees for this problem were O(min{k, Z=1}) for both directed and undirected graphs
[16, 4], and O(In k) for undirected graphs with n > 6k* [4], where n is the number of nodes
in the input graph. ! Better approximation guarantees are known for restricted edge costs,
as follows. For metric costs: 2+ 2(k — 1)/n for undirected graphs [17] (for a slight improve-
ment to 2 + (k — 1)/n see [16]) and 2 + k/n for directed graphs [16]. For uniform costs
there is a (1 + 1/k)-approximation algorithm for both directed and undirected graphs [3].
The case when the input graph is complete and the cost of every edge is in {0, 1} (so called
“vertex-connectivity augmentation problem”) is polynomially solvable for directed graphs
[7]; polynomial algorithms that compute a near optimal solution for undirected graphs are

given in [11, 13]. But in this paper we consider the case of general costs only.

The main result of this paper is the following theorem:

Theorem 1.1 There exists an algorithm for the minimum-cost k-connected subgraph prob-

lem with approzimation ratio O(Ink - min{Vk, = Ink}) and running time O(k*nm?).

This gives the first algorithm that has an approximation guarantee better than O(k)
for all values of n, k, and improves the previously best known approximation guarantees for
directed graphs for all values of n, k, and for undirected graphs for £ > \/% Note that
our approximation ratio is O(In® k) except for very large values of k (namely, k = n — o(n)).
In particular, for instances with n > kc where ¢ > 1 is a fixed constant, the approximation
ratio is O(ln2 k). For example, the previously best approximation ratios for £ = y/n and
kE = n/2 were O(k) and O(VE), respectively; our approximation ratio for both these cases
is O(In” k). For k = n — o(n) the improvement is from O(k) to O(vkInk). Our algorithm

is combinatorial, and runs significantly faster than the O( \/sTk)—approximation algorithm of

[4] which solves linear programs.

Remark: A generalization of the min-cost k-connected subgraph problem is the Survivable
Network Design Problem (SNDP): find a cheapest spanning subgraph such that for every
pair (u,v) of nodes there are at least k,, pairwise internally disjoint paths from u to v. It
is interesting to compare Theorem 1.1 with results in [15, 27] which show that SNDP with
kuy, € {0,k}, k = ©(n), and costs in 0, 1, is unlikely to have a polylogarithmic approximation
guarantee. On the other hand, Jain [14] showed that the version of SNDP where the paths

are only required to be pairwise edge disjoint admits a 2-approximation algorithm.

Our O(H”Tkan k)-approximation algorithm is based on a new result on ¢-connected p-

critical graphs which is of independent interest in graph theory. Namely, we will prove

!For undirected graphs, Ravi and Williamson [28] claimed an O(In k)-approximation algorithm, but the

proof was found to contain an error, see [29].



that any ¢-connected graph (directed or not) on n nodes has a subset U of nodes with
\U| = O(:"71n¢) such that no node-cut of cardinality ¢ contains U; we call such U an /-
cover (since U covers the complements of node-cuts of cardinality ¢), and denote by 7,(G) the
minimum cardinality of an f-cover in G. An (-connected graph G is p-critical if p < 74(G)
(this definition is shown to be equivalent to the one used in the papers on the topic, see
Section 1.2). For undirected graphs, our result partly bridges the gap between two main
bounds: the obvious fact that 7,(G) < £+ 1 and a result of Mader [21] which states that
7(G) < 3 for n > 6/2. Other previous bounds were for undirected graphs only, and of
the type 7(G) = O(() (e.g., [18]), or of the type 74(G) = O(1) for n = Q(£?) (e.g., [22]).
Our result gives the first nontrivial bound in the intermediate range for undirected graphs,
and overall the first nontrivial bound for directed graphs. Moreover, our proof provides a

polynomial algorithm that computes an ¢-cover within the stated bound.

Throughout the paper, let G = (V,€) denote the input graph with nonnegative costs on
the edges; n denotes the number of nodes in G, and m the number of edges in G. Unless

stated otherwise, “graph” stands for both directed and undirected graph.

This paper is organized as follows. In the rest of this section we introduce a standard LP-
relaxation to the min-cost k-connected subgraph problem, and state some simple facts about
l-outconnected graphs and p-critical graphs. In Sections 2 and 3 we give our algorithm for
the min-cost k-connected subgraph problem: in Section 2 we establish existence of an ¢ cover
of size O (=" In /) and show how to compute it, which implies an O (- In? k)-approximation

algorithm, while Section 3 present our primal-dual O(y/nIn k)-approximation algorithm.

1.1 LP-relaxation and /-outconnected graphs

For an edge set or a graph J on a node set V and S,T C V let §;(S,T) denote the set of
edges in J going from S to T. By Menger’s Theorem, there are k internally disjoint paths
from a node s to a node t in a graph G = (V, E) if, and only if, [05(S,T)| > k—(n—[SUT))
for all disjoint S, T C V with s € S and t € T. We will compare the cost of our solutions
to the optima opt; of the following LP-relaxation for the minimum cost k-node connected

spanning subgraph that has been introduced in [7] and used in [4]:

opt, = min Z CoXe

ecé
s.t. Y ze>k—(n—|SUT|) VYO#ASTCV,SNT=40
6655(S,T)
0<z. <1 Ve € &.



A graph is l-outconnected from a node r if it contains ¢ internally disjoint paths from
r to any other node; a graph is /-inconnected to r if its reverse graph is f-outconnected
from r (for undirected graphs these two concepts mean the same). Frank and Tardos [§]
showed that for directed graphs, the problem of finding an /-outconnected spanning subgraph
of minimum cost is solvable in polynomial time; a faster algorithm with time complexity
O(*n?m) = O(m?) is due to Gabow [9] (observe that nf/ = O(m) in an f-outconnected

graph).

Let G = (V, E) be an (-connected spanning subgraph of cost zero of a directed graph G,
and suppose that GG has a subset U of nodes such that no node-cut of cardinality ¢ contains
all of them. Then using the algorithm of [8] it is easy to get a 2|U|-approximation algorithm
for the problem of augmenting G to be (¢ + 1)-connected by adding an edge set of minimum
cost: for each node r € U we compute an ({+1)-outconnected spanning subgraph from r and
an (¢ + 1)-inconnected spanning subgraph to r and take the union of these 2|U| subgraphs.
In fact, the following lemma, which can be easily deduced from [5, Theorem 7] (e.g, see [4,

21U

Lemma 3.4]) implies that the augmenting edge set produced has cost at most 7=, 0pty.

Lemma 1.2 Let G be an (-outconnected from r subgraph of cost zero of a directed graph G,
and for an integer p let o be the minimum cost of an ({+p)-outconnected spanning subgraph
of G. Then o' < o?/p. In particular, for ¢ < k the minimum cost of an ({+1)-outconnected

spanning subgraph of G is at most ﬁoptk.

Khuller and Raghavachari [17] observed that the algorithm of [8] implies a 2-approxima-
tion algorithm for the problem of finding an optimal /-outconnected subgraph of an undi-
rected graph, as follows. First, replace every undirected edge e of G by the two antiparallel
directed edges with the same ends and of the same cost as e. Then compute an optimal
l-outconnected subdigraph from r and output its underlying (undirected) simple graph.
Several papers used this observation for designing approximation algorithms for node con-

nectivity problems, e.g., see [1, 2, 16, 4].

1.2 p-critical graphs and k-connected subgraphs

Let xk(G) denote the connectivity of G, that is the maximum integer ¢ for which G is /(-
connected. A (directed or undirected) graph G = (V, F) is p-critical if K(G—U) = k(G) —|U|
for any U C V with |U| < p. One can characterize p-critical graphs in terms of covers of
set families, as follows. Let G = (V, E) be an f-connected graph. Let X* = X} = {v €
V — X : dg(X,v) = (0} denote the “node complement” of X in G. We say that X C V is
an (-fragment if X* # () and |V — (X U X*)| = £. Tt is well known that if G is ¢-connected,



then |V| > ¢+ 1, and if |V| = £+ 1 then G must be a complete graph. Note that Menger’s
Theorem implies the following well known statement:

Proposition 1.3 An (-connected graph G (on at least £ + 2 nodes) is ({ + 1)-connected if,
and only if, G has no (-fragments.

Given a family F of subsets of a groundset V' we say that U C V covers F if U intersects
every set in F. Let Fy(G) be the family of all /-fragments of G. We say that U C V is an
l-cover of G if U covers {X U X*: X € Fi(G)}; let 4(G) denote the minimum cardinality
of an ¢-cover of GG. From Proposition 1.3 we have:

Proposition 1.4 Let G = (V, E) be a graph with x(G) = { and |V| > €+ 2. Then:

(i) G is p-critical if, and only if, for any U C V with |U| < p there exists an (-fragment
X with UN (X UX*)=0. Thus if G is p-critical then G is p'-critical for any p’' < p,

and 7(G) — 1 is the mazimum p for which G is p-critical.

(i1) U is an L-cover of G if, and only if, there exists an edge set F incident to U (that is,
every edge in F has at least one endpoint in U) such that G + F is (¢ + 1)-connected.

Combining Proposition 1.4(ii) with Lemma 1.2 and the discussion before it, we get the

following statement, which was implicitly proved in [4] for undirected graphs.

Proposition 1.5 ([4]) Suppose that there is a polynomial algorithm that finds in any (-
connected graph G on n nodes an {-cover of G of size at most t(¢,n). Then there exists

a polynomial algorithm that for instances of the minimum k-connected subgraph problem

on n nodes finds a feasible solution of cost at most opty - 2354 Ubn) opt, - O(Ink -

k—¢
maXo<y<k—1 t(f, n)) .

For undirected graphs with n > 6k? Cheriyan et al. [4] gave a 6 H (k)-approximation algo-
rithm for the undirected min-cost k-connected subgraph problem combining Proposition 1.5
with the following theorem due to Mader:

Theorem 1.6 ([21]) Any undirected 3-critical graph G has less than 6k(G)* nodes.

In a recent paper [22] Mader improved his bound for 3-critical graphs to n < k(G)(2k(G)—
1); hence via Proposition 1.5 the 6H (k)-approximation algorithm of [4] is valid for n >
k(2k — 1) as well.

On the other hand, it is easy to see that there are no x(G)-critical non-complete graphs.

But for undirected graphs, a stronger result was conjectured in [26], and answered by Su:



Theorem 1.7 ([30]) If a noncomplete graph G is p-critical, then p < |k(G)/2].

For a survey on p-critical graphs see [24, 25]; for some recent results see [22, 23] and [18].

2 Computing logarithmic covers

Note that in terms of covers of set families Theorem 1.6 states that 7,(G) < 3 for any
undirected graph G with x(G) = ¢ and n > 6%, and Theorem 1.7 states that 7(G) <
|1¢/2] + 1 (if n > £+ 2). Our result on p-critical graphs partly bridges the gap between
these two bounds, and also gives the first nontrivial bound on 74(G) for directed graphs. Let

0=0((n)= 2.

Theorem 2.1 There exists a polynomial algorithm that given an (-connected graph G on

n > ¢+ 2 nodes finds an (-cover of G of size at most

Hln) =24 " +i1n1(e—1—£2/n):0< n w)

n—4¥¢ Inf 2 n—1/¢

if G is undirected, and of size at most 2t(¢,n) if G is directed.
Combining with Proposition 1.5 we get:

Theorem 2.2 For the minimum cost k-connected subgraph problem there exists a polynomial

algorithm that finds a feasible solution of cost at most opty, - O(-"¢ In? k).

Remark: Note that 7,(G) is the minimum cardinality of a cover (transversal) of the (n —¢)-
uniform hypergraph {X U X* : X € Fy(G)}. Several general bounds on covers of uniform
hypergraphs are known, e.g., see [10]. But, as far as we can see, none of them implies the

bound given in Theorem 2.1.

We need several definitions and simple facts to prove Theorem 2.1. In the rest of this
section, let ¢ be a fixed integer, and let G be a graph with x(G) > ¢. An /-fragment X of
G is small if | X| < |X¥|, that is if | X| < |[(n — £)/2]. Note that by Proposition 1.3, G is
(¢ 4+ 1)-connected if, and only if, G (and the reverse graph of G, if G is directed) has no
small /-fragments. Let S;(G) denote the family of all small /-fragments of G. The following

Lemma is well known, e.g., see [11, Lemma 1.2], where it was stated for undirected graphs.

Lemma 2.3 Let X,Y be two intersecting (-fragments in an (-connected (directed or undi-
rected) graph G on n nodes. If n — | X UY| > £ then X NY is an (-fragment, and if a strict
inequality holds, then also X UY is an (-fragment. In particular, the intersection of two

intersecting small (-fragments is also a small (-fragment.
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A core of G is an inclusion minimal small /-fragment. By Lemma 2.3 the cores of G are
pairwise disjoint, and let v(G) = 14(G) denote their number; note that if x(G) > ¢ then
v(G) = 0. For a core C; of G, let A; be the union of all small ¢-fragments that contain a
unique core which is Cj. Let Ay(G) = {A1,..., Ay }. The properties of the sets in 4,(G)

that we use are summarized in the following statement:

Corollary 2.4 The sets in A(G) are pairwise disjoint. Moreover, for every A € AyQ)
holds: either A is an (-fragment, or |A| > n —{ (and A* =0); thus |[AU A*| > n — L.

Proof: Suppose to the contrary that A; and A; intersect for some 1 < i # j < v(G). Then,
by the definition of A;, A;, there are two small {-fragments D;, D; such that: D; contains
a unique core which is C;, D; contains a unique core which is Cj}, and such that D;, D;
intersect. By Lemma 2.3 D; N D, is a small ¢-fragment, and thus contains a core C'. This

implies that D; contains the two cores C; and C, which gives a contradiction.

To prove the second statement, let us fix some set A € 4,(G). Since the sets in A,(G)
are disjoint, A contains a unique core, say C'. Consider the family D of all small /-fragments
that contain a unique core which is C, so A is the union of the sets in D. If n — |A| </,
then clearly |AU A*| > |A| > n — ¢ (in fact, in this case A* = (), and thus |[A U A*| = |A]).
Otherwise, n — |A| > ¢+ 1; then by Lemma 2.3, the union of the sets in D is an (-fragment,
and thus |[A U A*| =n — £. In both cases, the statement is valid. O

Note that Corollary 2.4 does not imply that the sets in A,(G) are small, or that they are
(-fragments; it might be that A is large and that A* = () for some A € A,(G), but in any
case, |AU A*| > n — { holds.

Lemma 2.5 Let A be a family of sets on a groundset V' such that |A| > n — ¢ holds for
every A € A, where n = |V| and ¢ is an integer. Then there exists an element r € V that
covers (that is, intersects) at least (1 - ﬁ) |A| sets in A.

Proof: Forr € V, let A, = {A € A:r € A} be the sets in A covered by r. The claim

follows since we have

> Ml =2 1Al = [Al(n - 0).

reV AeA
O

Forr e Vet F, = {vr:v €V —r}, and let G+ F, be the graph obtained by adding an

edge from every node v € V to r, if such does not exist in G. We say that r € V' outercovers
Ae A(G) ifr e A"



Lemma 2.6 Let C; be a core of an (-connected graph G. If r outercovers A; then any small
C-fragment X of G + F, that contains C; must contain a core of G distinct from C;.

Proof: Let X be a small /-fragment of G + F, that contains C;. Assume by contradiction
that this is the unique core of G' that X contains. Note that X is a small /-fragment of G.
Since A; is defined as the union of all small /-fragments of GG containing C; as their unique
core, we obtain that X C A;. This gives a contradiction, since then r € A C X*, which
implies that X cannot be an /-fragment of G + F;. O

Lemma 2.7 Letr be a node that outercovers q sets in Ay(G). Then vi(G+F,) < v,(G)—q/2.

Proof: If k(G + F,) > ¢ then v,(G + F,) = 0 and the statement is obvious, so assume that
k(G + F,.) = {. By Lemma 2.3, the cores of G + F,. are pairwise disjoint. Clearly, every core
of G + F; is a small ¢-fragment of GG, and thus contains at least one core of G. Let ¢ be the
number of cores of G + F,. containing exactly one core of G. By Lemma 2.6, any core C of
G + F, that contains some core C; of G with r € A7 must contain another core of GG distinct
from Cj, so such C' contains at least two cores of G. Thus ¢ < 14(G) — g. From this we get
that v, (G + F,) < t+ (1(G) — 1)/2 < v(G) — q/2, as required. O

Since the sets in A4,(G) are pairwise disjoint, a node can belong to at most one of them.
Thus, if A" C A,(G) and r covers {AU A* : A € A'}, then there is most one set A" € A’
such that r € A’; for any other A € A — A" we must have r € A*, hence r outercovers at

least |A’| — 1 sets in A’. Combining this with Corollary 2.4 and Lemmas 2.5 and 2.7 we get:

Corollary 2.8 Any (-connected graph G has a node r that outercovers at least vy(G)(1 —
(/n) — 1 sets in A(G), and vy(G + F,) < %y (G) + 1/2.

Let us apply the following algorithm on an /-connected graph G starting with U = ().

While v,(G) > 0 do:

1. Find a node r for which v,(G + F,) is minimal;
22U+ U+r,G+ G+ F;

End While

Output U.

By Proposition 1.4(ii), at the end of the algorithm U is an {-cover, and let us estimate its

size. Let ¢; be the number of cores in G after j iterations of the main loop, and set § = f—fz

and a = 1/6. Corollary 2.8 gives the recursive bound

tj-l-l S (l/t]’ + 1/2
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We will prove later that ¢; < ¢ (see Corollary 2.11 below) which implies:

t. < aj*1€+1(1_‘_a+...+aj*2):Oéjflg_kl_iajilz
T 2 2(1 — )

- 1 1 1 n n
_= '771 — — -
“ (f 2(1—a)>+2(1—a) gi—1 <€ n—£)+n—£'

The inequality can be easily proved by induction on j. Let 5 = 3n/(n — ).

Claim 2.9
(l—1—0/n)+1.

(NN

ggﬂﬁwjzﬂmEﬁyn

Proof: We solve for j the inequality

1 n n 3n
e e ) R B B

n — n—¥0  n—/

That is
ln—1)—n

2n
The claim follows by taking logarithm base 6 from both sides, and then changing the loga-

4 1
G-l > = S(t—1-2/n).

rithm base:

1 1 1
) — > — — — 2 = — — — — 2 .
j—12>log, 2(6 1—¢7/n) =7 In 2(6 1—+¢7/n)

O

On the other hand, if ¢; > 0 then ¢, < t; — 1 since v,(G + F,) < 14(G) — 1 for any node
r belonging to a core C; of G (indeed, every core of G + F, must contain some core of G,
but cannot contain C;). Thus the number of iterations in the algorithm (which equals to the
size of the cover found) is bounded by [j(5)] + | 5] < t(¢,n). This proves Theorem 2.1 for
undirected graphs. In the case of a directed graph G, at the end of the algorithm G has no
small /-fragments, but G may not be (£ 4+ 1)-connected since the reverse graph of G might
have small /-fragments. Thus we apply the above procedure twice: on GG and on the reverse

graph of GG, and take the union of the resulting two node sets.

Let us now show that t; < ¢, and discuss some consequences from our approach. The

following statement is obvious.

Lemma 2.10 Let r be a node of a (directed or undirected) noncomplete graph G = (V, E)
with K(G) = ¢, and let N, = {v € V : vr € E} be the nodes in G having r as their neighbor.
Then N, covers all (-fragments of G + F,.

An /-connected graph J is minimally ¢-connected if J — e is not f-connected for every
edge e of J. Mader [19, 20] showed that any minimally /-connected graph J on n nodes has

9



at least % nodes of degree (indegree, if J is directed) ¢ each. Since F,(G) C Fy(J) for

any /-connected spanning subgraph .J of an /-connected graph G, Lemma 2.10 implies the

following corollary, which also proves that ¢; < /.

Corollary 2.11 Let G = (V, E) be an (-connected graph. Then there is R C'V with |R| >
(—1)n+2
21

neighbor cover all (-fragments of G, and in particular vy(G + F,) < L.

such that for any r € R the following holds: r and at most £ nodes having r as their

We note that for a directed graph G, Corollary 2.11 implies only the trivial bound
7(G) < ¢+ 1; however for undirected G, the following theorem provides an easy proof
of Theorem 1.7, which is similar to the one given by Jordan in [12]; recall that in terms of
covers, Theorem 1.7 states that 7(G) < | (/2] + 1.

Theorem 2.12 Let G be an undirected (-connected graph and let W be a cover of Fy(Q).
Then there exists an C-cover U C W of size at most ||W|/2].

Proof: In [19], Mader implicitly proved (e.g., see [11] and [16, Corollary 2.2]) that if W
covers all the /-fragments of an undirected /-connected graph G then there exists a forest F’
on W such that G+ F' is ({4 1)-connected. Since F is a forest, there exists U C W such that
|U| < ||[W]/2] and every edge in F' is incident to a node in U. Thus, by Proposition 1.4 (ii),
U is a cover of Fy(G) as required. O

Let us now analyze the time complexity of our approximation algorithm for k-connected
spanning subgraphs. Using max-flow techniques an ¢-cover as in Theorem 2.1 can be found
in O(¢m?) time, as follows. For the first iteration, we find a minimally /-connected spanning
subgraph J of G, and choose a node s of degree (indegree, if G is directed) £ in J; such J can
be found in O(¢m?) time by repeatedly checking every edge for deletion. By Lemma 2.10
the set N = N, of nodes having s as their neighbor in J covers all /-fragments of J + F,
and thus also of G + F,;. Now we set G < G + F;. We compute for every u € N, and
v € V a set of £ internally disjoint paths. This can be done in O(¢m) time per pair, thus
in O(f*nm) total time, using the Ford-Fulkerson algorithm (the node-capacitated version)
and flow decomposition. For each pair uv we check whether v is reachable from u in the
corresponding residual network. If so, then the pair uv is discarded; otherwise, a minimal /-
fragment containing v is found, and if its size is < (n—1)/2, it is the minimal core containing
v. At each iteration, for every r € V| we can recompute the cores of G + F, in O(lm) time.
Thus each iteration can be implemented in O(¢nm) time, and since the number of iteration
is at most £, an (-cover as in Theorem 2.1 can be found in O(*nm) = O(m?) time, as

claimed.

10



We also need to find a minimum-cost edge set to increase the outconnectivity from ¢
to ¢ + 1 from each node in the cover found. Frank [6] showed that a generalization of
this problem can be solved in O(n?m) time, but with some care Frank’s algorithm can be
implemented in O(m?) time. As the size of the cover found is O(f), we get that the overall
time complexity for increasing connectivity from £ to £ + 1 is O(¢m?), where m > n/ is the

number of edges in G. Consequently, the overall running time of the algorithm is O(k?m?).

3 A primal-dual algorithm

In this section we prove the following theorem:

Theorem 3.1 For the problem of making a ko-connected graph (directed or undirected)
k-connected by adding a minimum-cost edge set there exists an approzimation algorithm
with approzimation ratio O(\/nH (k — ko)) = O(v/nInk) and time complezity O(km(k*n? +
vnm)) = O(n®m), where H(j) denotes the jth Harmonic number.

We start by giving an algorithm for increasing the connectivity of a directed graph by
one. We use as a subroutine the primal-dual algorithm of Ravi and Williamson [28], which
we adapt to directed graphs. Given an (-connected graph G the algorithm of [28] uses the
primal-dual method to find an edge set F' so that G + F' is (£ + 1)-connected. We use the
same approach, but unlike the algorithm in [28], the primal-dual procedure terminates when

we find an edge set F'* so that v,(G + F*) = v/2n; we will show that ¢(F*) = O(%)optk.
We then find in G + F* a node set U of size O(y/n) by picking one node from every core;
for every r € U we find an (¢ + 1)-inconnected subgraph to r subgraph. The cost of each
subgraph found is O(5)opt; and their number is [U] = O(y/n). Thus the cost of the edge
set found during this step is also O(%)optk. We apply this procedure twice: on G and on

the reversed graph of G. Consequently, the total cost of the edge set found is O(%)optk.

Let G = (V, E) be an {-connected spanning subgraph of a directed graph G = (V. &),
such that all the edges in E have cost zero, and let I = & — E. Let § = §(G) denote the
set of small (-fragments of G. For an edge set F and S € S, let dp(S) = [0#(S,S*)| be
the number of edges in F' going from S to S*. Recall that G + F is (£ + 1)-connected if,
and only if, the graph G 4+ F' and its reverse graph have no small /-fragments. Note that
for F C I =¢&— FE, G+ F has no small (-fragments if, and only if, dz(S, S*) > 1 for any
S € S. Consider the following linear program (P) and its dual program (D), where (P) is
a linear relaxation for the problem of finding a minimum cost augmenting edge set F' such

that G + F' contains no small (-fragments:
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min Y ¢z, max > ys

ecl SeSs
(P) s.t. Z e >1 VSeS (D) s.t. Z ys < c. Veel
€€6;1(S,5%) SeS:e€d;(S,5%)
T, >0 Ve eI ys > 0 VS e S.

Lemma 3.2 Let x be an optimal solution to (P). Then Y ,c;Cete < ﬁoptk.

Proof: Let x be an optimal solution to the LP-relaxation for the min-cost k-connected
spanning subgraph problem (given in Section 1.1). Define 2, = 1 if e € E and 2, = 5z,
otherwise. Then z’ is a feasible solution to (P). Since all the edges in E have cost zero, the

claim follows. O

Given a feasible solution y to (D), an edge e € [ is tight if the corresponding inequality
in the dual program (D) holds with equality. If F* C I is a set of tight edges, then

(FH)Y=> c=> > ys=> dr(9ys. (1)

ecF+ ecF Se8:e€d(S,5*) Ses

Recall that by Lemma 2.3 the cores of G are disjoint. Let us fix the threshold f = v/2n
and apply the following procedure:

Procedure 1:
While v4(G) > f3, raise dual variables corresponding to cores of G' uniformly until some edge
e € I becomes tight, and add this edge to G.

Let F™ be the set of edges added to the input graph G by Procedure 1.

|Ft| opty
3 k—t

Lemma 3.3 Let F* C F+. Then ¢(F*) <

Proof: Let y be the dual solution produced by Procedure 1. Since the edges in F'* are tight,
we have ¢(FT) = Y gcsdp+(S)ys, by (1). Let C; be the family of cores of G at iteration i,
and let ¢; be the amount at which they were raised at iteration 7, 2 = 1,...,q. Note that
Ys = Y qisec;} € for any set S € S. Using this, together with the fact that the sets in C; are
disjoint and that |C;| > 3 we get:

1 1 Ci Ft & Ft F*| opt
S dee (S = Yoo Y dpe(8) < el pr L gy = sy < MoV
Ses i=1  Sec; i=1 g p i=1 p Ses p -
The first inequality follows by upper bounding 1 by |C;|/3, and noting that in Y gcc. dp+(S)
every edge is counted exactly once (since the graph we consider are directed). The last

inequality follows from Lemma 3.2 and the Weak Duality Theorem. O
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After executing Procedure 1, let Cy, ..., C,+ be the cores of G + F*.

Procedure 2:
For j =1,...,v%, choose r; € Cj, and compute an optimal edge set ]3;’ such that G + F;’
is (¢ + 1)-outconnected from r;.

Note that by Lemma 1.2, C(FJ-J“) < Hopty, j=1,..., v

We then apply Procedures 1 and 2 on the reverse graph of G + I to find appropriate edge
sets F~ and FJ,.. F_ . Let F be the union of all the edge sets found. Then G + F is
(¢ + )—Connected. The last step in our algorithm is finding an inclusion minimal edge set
F C F such that G + F is ({+1)-connected. Note that |F| might be large, but the following
statement shows that |F| = O(n).

Theorem 3.4 ([20]) Let G be an (-connected directed graph, and let F be an inclusion
minimal augmenting edge set such that G + F is ({ + 1)-connected. Then |F| < 2n — 1.

Lemma 3.5 The algorithm produces a feasible solution of cost at most 4*/% opty.

Proof: By Theorem 3.4, |F| < 2n. Set F* = F*NF, F- = F " NF, F =F'NF
for j = 1,...,v", and Fj = Fj_ NF for j = 1,...,v . Applying Lemmas 3.3 and 1.2,
Theorem 3.4, and recalling that v, v~ < 8 < /2n, we get:

_ 2o0pty (2_n N ﬁ> 4/2n

c(F) < c(FT) +c(F +Z (F}) +Z <ty 3 <2

opty.
O

Suppose now that the input graph G contains a k¢-connected spanning subgraph of cost
zero. We can repeatedly apply the above algorithm starting with ¢ = kg until £ = k — 1, to
compute a k-connected spanning subgraph of G; the overall cost of the subgraph found will
be at most 4v/2nH (k — ko)opt;, = O(y/n1n k)opty.

For undirected graphs, an 8v/2nH (k — ko)-approximation algorithm easily follows using
the reduction due to Khuller and Raghavachari [17] described at the end of Section 1.1.

To finish the proof of Theorem 3.1, let us discuss the implementation and the time
complexity of the algorithm. As was mentioned, Procedure 1 in our algorithm is similar to
the one used in [28], and we can adapt the implementation of [28] as well. We omit the
details, but note that for implementing all Procedures 1 in the algorithm, as well as finding
minimal edge sets F C F such that G + F is (¢ + 1)-connected, ¢ = 0,...,k — 1, can be
done in O(k*mn?) = O(k*nm?) total time, see Section 5 in [28]. Using the algorithm of [9],

the overall time required for Procedure 2 implementations is O(k*mn?/n). Note however,
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that Procedure 2 requires finding a minimum-cost edge set to increase the outconnectivity

from ¢ to £+ 1. As was mentioned, this problem can be solved in O(m?) time using Frank’s

algorithm [6]. Thus the total time required for Procedure 2 executions is O(kv/nm?).

Acknowledgment The authors thank Joseph Cheriyan and an anonymous referee for

their comments.
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